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In this Comment two main issues are addressed that are pertinent to the interpretation of the transition to
turbulence for shear type flows on the basis of transient chaos: the fractal character associated with this
transition and the precision needed for a reliable numerical modeling. The analysis is based on a simplified
model of 19 degrees of freedom for Couette flow, proposed some years ago by Eckhardt and Mersmann. We
conclude that the landscape of lifetimes cannot be fractal, and that a very high numerical accuracy is needed to

obtain sound results.
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I. INTRODUCTION

In 1997, Schmiegel and Eckhardt [2] studied the dynam-
ics of localized perturbations in plane Couette flow. The nu-
merical model they used, designed to allow accurate long
integration times, was based on a pseudospectral method
with an expansion of the velocity field in Fourier modes and
Legendre polynomials. Among other topics, the authors ana-
lyzed the dependence of lifetimes of turbulent orbits on the
Reynolds number and the initial data. In particular, they
showed how evolutions identified as turbulent depend in a
sensitive way on the initial perturbation amplitude. On the
basis of their Figs. 3 and 4, they concluded that the landscape
of lifetimes exhibits fractal features, certainly a stronger
statement than the previous understanding. Calculations were
made with 962 dynamically active degrees of freedom
(DOF). Two years later, Eckhardt and Mersmann [1] pre-
sented a 19-dimensional Galerkin approximation to a parallel
shear flow. Section III of that paper was devoted to the dy-
namics of perturbations, and the results obtained there rein-
force, within a simpler frame and thus with more detail, the
conclusions of the earlier work (see their Figs. 5-7). Even
when the situations discussed by these authors, and by us in
this Comment, are mostly related to transient turbulence
(transient chaos [3,4]) but not to plain turbulence (chaos), the
extreme sensitivity to perturbations is clearly expressed. The
associated numerical difficulties require new calculation ap-
proaches usually known as chaos computability (see, among
others, [5,6]: see comments concerning the relations between
strange attractors and chaos computability).

This Comment is based on the above mentioned 19-DOF
model [1]. We conclude that the landscape of lifetimes can-
not be fractal, and that very high numerical accuracy is
needed in order to calculate correctly the transient turbulent
trajectories as well as their lifetimes. As we will show,
simple arguments based on the continuous dependence on
initial values of the original problem support completely the
first statement. Nevertheless, numerical evidence will be also
presented.
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II. DISCUSSION

The calculations presented here have been made with
software based on the Adams-Bashforth (AB) algorithm, on
the basis of which numerical solutions of ordinary differen-
tial equations (ODEs) can be obtained with high precision.
Certainly, higher accuracies notably increase computational
costs. In the present work the possibilities of a small machine
(Pentium IIT 733 MHz with 640 megabytes of RAM) have
been fully exploited. Relative and absolute precision goals
up to 21 digits together with a working precision of 33 digits
have been used. Under these extreme conditions, the calcu-
lations of an orbit for 0=<7=<4000 took about 1 h of CPU
time.

All calculations were made with the original variables vy,
i.e., no calculation in perturbation variables is presented. The
low dimensional model discussed in Ref. [1] contains the
equilibrium point (0,4/72,0,4/972,0,...,0), which is in-
dependent of the Reynolds number defined as Re=uyd/2v.
Here d=m is the width of the gap between plates, v the
kinematic viscosity, and ug=1 the wall velocity of the linear
profile with vanishing mean value. This equilibrium point
corresponds to an approximation to Couette’s flow (see [1]).
The value Re=400 has been adopted everywhere.

Figure 1 shows how the numerical solutions (in particular
their by-products, such as lifetimes) depend on precision pa-
rameters. Figure 1 (a) depicts calculations with insufficient
precision and Fig. 1 (b) a range of precisions for which the
results appear to be ‘“acceptable.” It should be pointed out
that many other similar calculations have been made (not
shown here), showing even more pessimistic results. The en-
ergy E is evaluated with the formula (see [1])

7 19
E=2y+22;. (1)
i=1 i=8

If, say, t>3000 the energy takes practically the value
0.166 284..., which is that of the equilibrium point. The
(unique) initial condition used here was a selected random
vector of 19 components, with L,, norm less than 1.

The descriptions above deal with “uncontrolled perturba-
tions” originating in numerical errors. Now, adopting previ-
ous information about acceptable levels of precision to ob-
tain reliable solutions, the effects of small “controlled
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FIG. 1. (Color online) Dependence of lifetimes on precision
parameters. Energy (E) vs time (). Re=400. Numbers between bars
mean absolute precision/relative precision/working precision (in
decimal digits). (a) Insufficient precision for calculations. 1 (red)
06/06/17; 2 (yellow) 12/12/22; 3 (green) 14/14/24; 4 (brown)
16/16/30; 5 (black) 18/18/30. (b) Acceptable precision. 6 (green)
19/20/30; 7 (blue) 20/20/32; 8 (black) 21/21/33.

perturbations” on the initial conditions are empirically inves-
tigated. To that purpose, the same random initial condition
vector as in Fig. 1 was used, to be later modulated slightly by
variable amplitude factors (controlled perturbations). Thus,
initial conditions change along a small segment of a ray in
the phase space, defined by the previous vector. Figure 2 (a)
depicts six solutions originated in equidistant initial condi-
tions of amplitudes 1/10+107'® to 1/10, distributed along
the given ray. Figure 2 (b) shows a detail in a small window
where curves begin to separate. Three features are worth
noting. (1) Nearby orbits move close together, until a region
where they drastically separate (diverting solutions; see [5]).
(2) The convergence is monotonic for solutions with 7 less
than 1120, say, for a very small range of amplitudes of value
107'%. (3) In Figs. 1 and 2 (as well as in many other figures
corresponding to this work, but not shown here), whenever
(controlled or uncontrolled) perturbations diminish, the point
where the perturbed curve violently separates from the ref-
erence curve moves to the right (see Fig. 4b of Ref. [6] and
related text). In other words, the smaller the perturbation, the
longer the separation instant. This last observation is true in
practically all cases, with some minor exceptions [see, for
example, curves in Fig. 1 (upper)]. It also illustrates how the
continuous dependence on initial values typically manifests
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FIG. 2. (Color online) Continuous dependence on initial values.
Energy (E) vs time (¢). Re=400. Convergence for initial conditions
with amplitudes descending from 1/10+107'° to 1/10, in five steps
of value —2X 1077 (1 to 6 blue to red). The precision used was
20/20/33. (a) Global view. (b) Zoom of the window (z;,,)
X (E;,E;)=(960,1120) X (0.0385,0.048), showing monotonic
convergence.

itself in situations close to chaotic dynamics (positive and
negative local Lyapunov exponents, i.e., perturbation-
sensitive neighborhoods [5]).

The discussion in the previous paragraph leads to the fol-
lowing conclusion. For a given appropriate precision, there
exists a sufficiently small interval of amplitudes [0.1,0.1
+€],0<e< 10716, containing initial conditions, such that all
separation points lie to the right of, say, t=4000. Thus, the
family of curves like those in Fig. 2 (upper) created in these
initial conditions will exhibit a monotonic convergence to the
reference curve, which was obtained with amplitude 1/10.
The next conclusion reads: The fractal character apparently
expressed by successive magnification in Fig. 7 of Ref. [1]
(Re=200) terminates for amplitude intervals roughly of or-
der €, with a clear simplification of small scales: a smooth
monotonic variation of lifetime with amplitude is expected.
The smallest scale discernible in Fig. 7 of [1] is of the order
107, to be contrasted with e<107'%. This last conclusion
should also be qualitatively true for Fig. 4 of Ref. [2] (Re
=380). Unfortunately, calculation of such high precision or-
bits, corresponding to €<< 1071, was out of our reach. To
skip some difficulties, our calculations have been made with
Re=400, somewhat higher than those used in the two previ-
ous references. However, this value of Re is well within the
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transition zone shown in Fig. 5 of Ref. [1]. (Other values of
Re have also been used for numerical experiments, leading
to the same qualitative conclusions.) Finally, it becomes clear
that the transition zone is a region characterized by drastic
but smooth variations [7].

Numerical analysis is not necessary to reach such a con-
clusion. As mentioned in the Introduction, nonfractality is a
direct consequence of the continuous dependence on the ini-
tial values of the original problem. This is an essential con-
dition with physical relevance. At least for the present case,
problems satisfy such a condition of well-posedness. This
can be seen by straightforward informal arguments. The vec-
tor field of the 19-dimensional model under study (equations
not shown here) is polynomial of degree 2, thus locally Lip-
schitz. All solutions of interest are bounded. It is thus always
possible to accommodate appropriate compact sets in the
phase space containing them. In this way, the local Lipschitz
condition becomes a global one within such sets. Classical
theorems for ODEs state the continuous dependence on ini-
tial values for any compact set in the extended phase space
(that enriched with the time axis), containing the initial point
(see, for example, Ref. [8] Chap. 6, Theorem 2 and Corol-
lary, among other texts for ODEs). Thus, if a series of initial
conditions tends to a previously given one, as illustrated in
Fig. 2, the same is true for the associated lifetimes (as well as
for any other quantity of interest, continuously dependent on
solutions).
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To assess the results here presented, most of the calcula-
tions have been reproduced using the Runge-Kutta-Fehlberg
algorithm of combined fourth and fifth orders (RKF4-5).
This time a Pentium IV, 2.8 GHz with 1 gigabyte of RAM
was used. We have observed that if the precisions of both
ODE solvers are to be reasonably comparable, about two
additional orders of accuracy were needed for RKF4-5. In
this way, results and conclusions obtained here with the AB
algorithm were essentially confirmed by the RKF4-5. “Es-
sentially” refers to the difficulties and limitations in high
precision numerical processing, always present (for example,
the extreme sensibility occasionally observed, manifested by
variations of the results when solving the same problem in
different computers, within the same general conditions).

All the previous discussion has been restricted to the sim-
plified model proposed in Ref. [1], with 19 DOF. It is then
reasonable to expect that for the more complex and realistic
models used in current practice, with much higher numbers
of DOF, the effects of numerical errors will go from bad to
worse.

We are indebted to Dr. B. Eckhardt for providing us the
19—dimensional model disucssed in the present Comment
and to Dr. D. Zanette, for useful discussions. This work
was supported by CONICET Argentina, under grant
PID-2212.
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